278 research outputs found

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Stationary states and energy cascades in inelastic gases

    Full text link
    We find a general class of nontrivial stationary states in inelastic gases where, due to dissipation, energy is transfered from large velocity scales to small velocity scales. These steady-states exist for arbitrary collision rules and arbitrary dimension. Their signature is a stationary velocity distribution f(v) with an algebraic high-energy tail, f(v) ~ v^{-sigma}. The exponent sigma is obtained analytically and it varies continuously with the spatial dimension, the homogeneity index characterizing the collision rate, and the restitution coefficient. We observe these stationary states in numerical simulations in which energy is injected into the system by infrequently boosting particles to high velocities. We propose that these states may be realized experimentally in driven granular systems.Comment: 4 pages, 4 figure

    Graphical Representations for Ising Systems in External Fields

    Full text link
    A graphical representation based on duplication is developed that is suitable for the study of Ising systems in external fields. Two independent replicas of the Ising system in the same field are treated as a single four-state (Ashkin-Teller) model. Bonds in the graphical representation connect the Ashkin-Teller spins. For ferromagnetic systems it is proved that ordering is characterized by percolation in this representation. The representation leads immediately to cluster algorithms; some applications along these lines are discussed.Comment: 13 pages amste

    Dynamic and static properties of the invaded cluster algorithm

    Full text link
    Simulations of the two-dimensional Ising and 3-state Potts models at their critical points are performed using the invaded cluster (IC) algorithm. It is argued that observables measured on a sub-lattice of size l should exhibit a crossover to Swendsen-Wang (SW) behavior for l sufficiently less than the lattice size L, and a scaling form is proposed to describe the crossover phenomenon. It is found that the energy autocorrelation time tau(l,L) for an l*l sub-lattice attains a maximum in the crossover region, and a dynamic exponent z for the IC algorithm is defined according to tau_max ~ L^z. Simulation results for the 3-state model yield z=.346(.002) which is smaller than values of the dynamic exponent found for the SW and Wolff algorithms and also less than the Li-Sokal bound. The results are less conclusive for the Ising model, but it appears that z<.21 and possibly that tau_max ~ log L so that z=0 -- similar to previous results for the SW and Wolff algorithms.Comment: 21 pages with 12 figure

    Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model

    Get PDF
    The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states.Comment: 4 pages, 6 figures, 2 table

    Ground states and thermal states of the random field Ising model

    Get PDF
    The random field Ising model is studied numerically at both zero and positive temperature. Ground states are mapped out in a region of random and external field strength. Thermal states and thermodynamic properties are obtained for all temperatures using the the Wang-Landau algorithm. The specific heat and susceptibility typically display sharp peaks in the critical region for large systems and strong disorder. These sharp peaks result from large domains flipping. For a given realization of disorder, ground states and thermal states near the critical line are found to be strongly correlated--a concrete manifestation of the zero temperature fixed point scenario.Comment: 5 pages, 5 figures; new material added in this versio
    • …
    corecore